报告题目:The concept of electrostatic doping and related nano-devices
时间: 2018年11月22日(周四)9:30-10:30am
地点: 电子与光学工程学院学科楼B-223
报告人: Sorin Cristoloveanu
主办单位:电子与光学工程学院、微电子学院
报告人简介:
Sorin Cristoloveanu received the PhD (1976) in Electronics and the French Doctoratès-Sciences in Physics (1981) from Grenoble Polytechnic Institute, France. He is currently Director of Research CNRS. He worked at JPL (Pasadena), Motorola (Phoenix), and the Universities of Maryland, Florida, Vanderbilt, Western Australia, and Kyungpook (World Class University project). He served as the director of the LPCS Laboratory and the Center for Advanced Projects in Microelectronics, initial seed of Minatec center. He authored more than 1,100 technical journal papers and communications at international conferences (including 160 invited contributions). He is the author or the editor of 28 books, and he has organized 25 international conferences. His expertise is in the area of the electrical characterization and modeling of semiconductor materials and devices, with special interest for silicon-on-insulator structures. He has supervised more than 90 PhD completions. With his students, he has received 13 Best Paper Awards, an Academy of Science Award (1995), and the Electronics Division Award of the Electrochemical Society (2002). He is a Fellow of IEEE, a Fellow of the Electrochemical Society, and Editor of Solid-State Electronics. He is the recipient of the IEEE Andy Grove award 2017.
报告摘要:
The ‘electrostatic doping’, also defined as gate-induced charge, is a unique feature of nano-size structures such as FD-SOI, nanowires, nanotubes, and 2D materials. In an ultrathin device, a positive gate bias induces electron population that spreads in the entire body (volume inversion or accumulation). The original undoped body suddenly behaves as an N-doped region. Changing the polarity of the gate bias turns the body into a P-type region.
The electrostatic doping can be contemplated as the last chance to form junctions and contacts in desperate technologies where ion implantation is not applicable; examples of CNT, 2D, and NW devices. Another interesting device is the Hocus-Pocus diode which can be emulated in ultrathin, fully-depleted Silicon-On-Insulator (FD-SOI) films by appropriately biasing the front and back gates. The reverse current, forward current and depletion depth become gate-controlled. By modifying the type of electrostatic doping (N or P), the virtual diode can be reconfigured in 8 other devices: semi-virtual diodes, PIN diodes, tunneling field-effect transistors (TFETs) or band-modulation FET. We will discuss in detail the device physics, architecture, and applications for the most promising devices with electrostatic doping.